Waves of maximal height for a class of nonlocal equations with homogeneous symbols
نویسندگان
چکیده
We discuss the existence and regularity of periodic traveling-wave solutions a class nonlocal equations with homogeneous symbol order -r, where r > 1. Based on properties convolution operator, we apply analytic bifurcation theory show that highest, peaked, solution is reached as limiting case at end main curve. The highest wave proved to be exactly Lipschitz. As an application our analysis, reformulate steady reduced Ostrovsky equation in form terms Fourier multiplier operator m(k) = k$^{-2}$. Thereby recover its unique 2π-periodic, peaked solution, having property being Lipschitz crest.
منابع مشابه
Maximal operator for pseudo-differential operators with homogeneous symbols
The aim of the present paper is to obtain a Sjölin-type maximal estimate for pseudo-differential operators with homogeneous symbols. The crux of the proof is to obtain a phase decomposition formula which does not involve the time traslation. The proof is somehow parallel to the paper by Pramanik and Terwilleger (P. Malabika and E. Terwilleger, A weak L2 estimate for a maximal dyadic sum operato...
متن کاملExistence and Stability of Traveling Waves for a Class of Nonlocal Nonlinear Equations
In this article we are concerned with the existence and orbital stability of traveling wave solutions of a general class of nonlocal wave equations: utt − Luxx = B(±|u|u)xx, p > 1. The main characteristic of this class of equations is the existence of two sources of dispersion, characterized by two coercive pseudo-differential operatorsL and B. Members of the class arise as mathematical models ...
متن کاملSpiral Waves in Nonlocal Equations
We present a numerical study of rotating spiral waves in a partial integro-differential equation defined on a circular domain. This type of equation has been previously studied as a model for large scale pattern formation in the cortex and involves spatially nonlocal interactions through a convolution. The main results involve numerical continuation of spiral waves that are stationary in a rota...
متن کاملA numerical algorithm for solving a class of matrix equations
In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$ by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.
متن کاملExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2021
ISSN: ['1943-5258', '0022-2518', '1943-5266']
DOI: https://doi.org/10.1512/iumj.2021.70.8368